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Abstract. The cheap control regulator for time-invariant nonlinear systems is studied with respect

to uniform L2-boundedness of the state trajectories in the case where the small parameter "¢" tends
to zero. By using the geometric approach, state-space conditions for L2-boundedness are found and

related to the concept of zero dynamics
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1 INTRODUCTION

In many control systems, a strong control action
is desirable. For feedback systems, a strong con-
trol action is achieved by using high gain controls.
In order to obtain a high gain regulator as the re-
sult of an optimal control problem, the cost of the
control should be “cheap”. For a linear control
system

x = Ax+Bu
y = Cx, (1)
X € R y€eRP, ueR™,

the cheap control problem is characterized by the
presence of the small positive constant € in the
cost functional

7=3 [ ex? + i ®)

The cheap control problem has been widely stud-
ied in the literature, see for example (O‘Malley
and Jameson, 1975; Young et al., 1977; Kokotovic,
1984) and the references therein.

When u(-) minimizes (2), the resulting state tra-
jectory ¢.(xo) of (1) obviously depends on e.
Francis and Glover (1978) studied the following
important problem: when is the trajectory ¢.(xq)
bounded uniformly as ¢ tends to zero, for each
xo? This is actually what the bounded peaking
means. Naturally, this problem is of considerable
practical interest. For example, in many cases,
one would like to increase the speed of response
of the system by tuning the gain as high as pos-
sible, then he must be first assured that this can
be done without causing some state variables to

peak excessively.

As is well known, the optimal control of (2) is a
linear feedback control u = F.x where

F. = —%BrrPE
€

and P, is the positive semidefinite solution of the

Riccati equation

1
ATP,+PA+CIC= —F-Z;PéBBTPE. (3)



The closed-loop system is described by
x = (A + BF/)x (4)
The transition matrix of (4) is

T, = ((A+BF.)t

By L?-bounded peaking here means that the set

{lITel]2 : €0 =€ >0}

is bounded for some ¢y > 0.

In (Francis and Glover, 1978) the following neces-
sary and sufficient conditions are given:

Lemma 1.1 L?-bounded peaking is equivalent to

the conditions

1. rank G(s) =rank CB = r, and

2. 9-(s%) has no zeros in Re s =0,

where G(s) = C(sI — A)~!'B and v, = det(sI —
A)det(—sI — A)7,, where 7, is the sum of all r-
order principal minors of the matrix G(s)G(—s)7.

When these conditions are satisfied, the solution
to the cheap control problem always results in a
high gain (consider k = % as the gain) feedback
law. As ¢ tends to zero, the trajectories of the
closed-loop system converge to a “slow” invari-
ant subspace. In this paper is given a complete
characterization of the dynamics on this subspace
from a geometric point of view, and some of the
results are generalized to nonlinear affine control
systems. It should be pointed out that for linear
systems, by using a special coordinate system, the
converging subspace was identified in (Saberi and
Sannuti, 1987). However, the approach used here
is coordinate free and it will be seen that compu-
tation of the dynamics on the subspace is actually
quite subtle in the case where the system does not
have a relative degree.

2 PRELIMINARIES

In this section is given a brief review of the con-

cepts of zero dynamics and adjoint system which

will be needed later. ('onsider a linear system

x = Ax+Bu
(3)
y = Cx,
where x € R", u & R™ and y € RF.
For (5), the adjoint system is defined as:
z2 = —-ATz+CTv
w = BTz (6)

Using G(s) and G,(s) to denote the transfer func-
tion matrices for (5) and (6) respectively, it is well
known that the following equality holds:

G(s) = —=G}(—s).

In particular one sees that the transmission ze-
ros of the adjoint system are the mirror images
of those of the original system. The concept of
zero dynamics, see for example (Isidori, 1989), is
closely associated with transmission zeros and has
proven to be quite useful, especially for nonlinear

systems, where transmission zeros are not defin-

able.

In this paper the adjoint zero dynamics of the zero
dynamics of (5) is defined as the zero dynamics of

(6).

Now consider a nonlinear system

X f(x) + g(x)u
y = h(x),

where x € R*, u € R™ andy € RP, and £f(0) = 0,
h(0) = 0, and g(x) = (g1(x), ... gm(x)). For the
sake of simplicity, it is also assumed that all the

(7)

mappings are smooth in a neighborhood N(0) of
0.

For any xq in N(0), the pointwise adjoint system
of (7) is defined as

S 8f(xa) \T 8h(x0)\T
g = —(SEyEr(=t)Yr

= (g(x0))7z. (5)

Similarly, the pointwise adjoint zero dynamics of
the zero dynamics of (7) is defined as the zero dy-
namics of (8). Obviously, for nonlinear systems
the pointwise adjoint zero dynamics makes sense
only when the zero dynamics of the original sys-
tem does exist.



3 BOUNDED PEAKING

Consider the optimal control problem
o0
min / (h(x)Th(x) + e*uTu)dt
0

subject to the system (7) under the following as-

sumption.

Al: For any € > 0, the above optimal control
problem is solvable for any x in a neighborhood
W(0) of 0 and the optimal control is in the form
of a smooth feedback u = u.(x).

First a special case of (7) is considered, namely
where p = m, i.e., the number of inputs is equal
to the number of outputs. In this case a second
assumption is made:

A2 The system (7) has relative degree (1,...,1)
at x = 0 and span{gi(x), ..., gm(x)} is involutive.

Remark: As long as the system has a relative de-
gree, it is easy to see that the relative degree be-
ing one is a necessary condition for the closed-loop
trajectories to be L2-bounded.

Under the hypothesis Al, it is a standard result
that for (7) both the zero dynamics and its point-
wise adjoint exist at least locally. Let V* denote
the zeroing subspace associated with the point-
wise adjoint zero dynamics at a point x € W(0)
and F(x) be a friend of V* (see (Wonham, 1979)
for the definition of friend). Now let a new output
to the original system be defined as

¥y=y+F(x)z.

It turns out that, as € — 0, the closed-loop tra-
jectories of the optimal system actually converges
to the zero dynamics of the following augmented

system:
x = f(x)+g(x)u
g = _(a_fs(l;ﬁ)Tz"'(aha!:"))T" ©
¥y = h(x)+F(x)z )
w = (g(x0))"z,

where y and w are considered as the output. This

is summarized below.

Theorem 3.1 Suppose the hypotheses Al and A2
are satisfied and the zero dynamics of (7) is

hyperbolic. Then, there exists a neighborhood
W'(0) € W(0), such that for all initial condi-
tions in W'(0), as ¢ — 0. the closed-loop tra-
jectories of the optimal system converges to the
zero dynamics of the augmented system (9) de-
fined on M*. Furthermore, there is a stable man-
ifold Z* = {(x,2) € M~ : z = ¢(x)}, such that
the closed-loop trajectories of the optimal system
converges to Z*.

The proof is just a fairly standard application of
singular perturbation methods. It is omitted here.

Under the hypothesis A2, one can transform (7)
into the following normal form locally:

z = fo(z,n)
n = fi(z,n)+gi(z.nu (10)
Yy = n

where g;(0, 0) is nonsingular. One can easily com-

pute the zero dynamics of the augmented system

as
z = fo(z,p(z 2%))
£ 11
g = _(Bfo(z.giz.z H)szu' (11)
where p(z,z*) is implicitly defined by
afﬂ(zyp) T
_ e ¥
P+ ( By )2
In the linear case, (11) becomes
; = Agz— A ATz
" Pt (12)
" = —Ajz

where the pair (Ao, A;) is stabilizable by Al.
Thus, when the zero dynamics is stable, the dy-
namics of the converging optimal trajectories is
governed by the zero dynamics

z = Apz;

when the zero dynamics is antistable, the dynam-
ics of the converging optimal trajectories is gov-
erned by

7* = —=PATzP"!,

where P is the solution to a Lyapunov equation.
When A, contains both stable and unstable eigen-
values, one has to decompose Ag further.

The general case, where the system is not neces-



sarily square and/or does not necessarily have rel-
ative degree 1, is quite difficult to analyze. Here
only the linear case is discussed, as the prepara-
tion for eventually solving the nonlinear case.

In the linear case, the optimal control problem

becomes
min g [ (vl + €l (1
subject to
x = Ax+Bu (14)
y = Cx,

under the assumptions that (A, B) is stabilizable,
(C,A) is detectable, B has linearly independent
columns and C has linearly independent rows.
Now a coordinate free characterization of the L-
bounded peaking conditions is discussed and from
the proof the dynamical equations which govern
the converging optimal trajectories, as € tends to
0, are given.

Theorem 3.2 L*-bounded peaking is equivalent to
the conditions that

1. the restriction of C to the subspace B/(B N
R*) of the state-space has full column rank, where
B =Im(B), and

2. the zero dynamics of the system is hyperbolic.

Considering the decomposition suggested by Fran-
cis and Glover (1978), the state-space X can be
decomposed as

X = X19XoX38 X4
= V'/R"eaR* W& B/(BNR"),

where W is the complement of V* & B in X. The
system (14) then has the following form

X1 A 0 Ap Ayp X1
X2 _ Az Az Ay Ay X2
| 0 0 A Axu || x
X4 KAu Ap An Ay X4
0 0
B'z 0 (ug)
+ )
0 0 Uy
kﬂ B,
y = (0 0 Cs Ci)x,

where B4 is nonsingular. Following the stan-
dard procedure to solve the problem (13)- (14),
the variables A2, A4 and x, are rescaled accord-

ing to X2 = Ma/e, Ay := Ay/e and %2 = exa.
The new variables converge according to Francis
and Glover (1978). In order to have the singu-
larly perturbated subsystem corresponding to the
variables x4 and A4 in standard form, the matrix
CIC‘; must be nonsingular, i.e., C4 must have
full column rank, which is assumed in the sequel.
First consider the case where CI C4 = 0 and let
CI C4 =1 to simplify the notation. The reduced
dynamic equations, as ¢ — 0, then become

)‘lcz = Azzf(z = B2 ng!
= X T Ty—1 : (15}
A2 = —Agg)t'g = AQ')(B4BQ ) A‘QX]
and
X1 = Aunxi+Anax; - Al-tAﬂ/\l
—A AT
4\1 = —Afl Al (16)
Xs = Axs— A AT — A AT
da = —CTCixs —ALXN - AL,

The dynamic equations corresponding to the sub-

spaces R* and W U V™/R* are two independent
subsystems. First, consider the subspace R*. In
the equations (15), the pair (As2, Bs) is of course
stabilizable. Furthermore, (A 42, A22) must be de-
tectable from the assumption of overall detectabil-
ity of the system. Therefore the Riccati equation
associated with (15) has a unique positive semidef-
inite stabilizing solution P,. Now suppose that P
is the possible solution to the Riccati equation as-
sociated with (16). Partition P as

P, P,
P= -
(P§' P4)

Let Py = 134+f'4, where P4 is the unique positive
semidefinite solution to the equation

ALP, + P,Ass — PLAnALP, +CTCi=0.

Such a solution P exists, since clearly (Aasz, Asq)
is stabilizable and (C3, A33) is observable.

The Riccati equation can therefore be written

where

%= (An Ay = AL4A§4?4> B = (AM)
0 Asz;z—AypALP,/’ Asy

It is immediately seen that since Az;— A34Ag4P4
is stable, a unique positive semidefinite solution



exists if A;; does not have any eigenvalues on the
imaginary axis.

Now consider a general matrix C, which has lin-
early independent rows. A straightforward calcu-
lation shows that the form of the Riccati equation
for the case CIC4 = 0 is preserved by substitut-
ing A.13, A33 and C;Ca for

A;; = A;z—Au(CTcy)'cics
Asa Ass — Au(CTCy)ICCs
CiCs cI(I- Cy(CTCi)~*C)Cs,

i

respectively. It is easy to show that (Aas, Asq)
is stabilizable. Defining the orthogonal projection
matrix P, := C4(CTC4)~1CT, P,C3 can be in-
terpreted as the orthogonal projection of C3 onto
the column space of C4. The following lemma
reflects the subtlety in the general case.

Lemma 3.3 The pair (Cs, Aa3) is observable.

Proof: Denote by a bar matrices and subspaces
referring to the system ”after projection”, i.e.,
after having made the substitutions above, and
let matrices and subspaces without bar refer to
the original decomposed system. Suppose that
(Cs, Ass) is not observable. Then V* is not max-
imal. Furthermore, C3 and C,4 cannot form set
of linearly independent column vectors. In the
following is shown that there exists a subspace
Va # 0, such that V := V* + V3 contradicts
the maximality of V*, exactly when there ex-
ists a V3 # 0 that contradicts the maximality
of V*. Note that V* # V* in general. Since
ker[C3, C4] # 0, there are subspaces X3 and X4
such that C3.X3 + C4X4 = 0. Multiplying by CT
and inverting, yields X4 = —(CTC4)~1CTC5X5.
Let

Va=(0 0 X3 X4)T,
where X3 C X3 and X4 C X, satisfy
A33X3+ A3 Xy C X3, CsX3+CyXy=0.

Substitution  for X3  ylelds (Ass —
A34(CTC4)"1CTC3)X3 C Xa, ie, AgsXs C
X, and C3X3 — C4(CTC4)~1CTCs%; = (I -
P,)C3X3; = 0. Since (I - P,) is symmetric and
positive semidefinite, C3 can be written Cj :=
(I-P,)Y/2Cj3, so that X3 C ker C3. Since C4 has
full rank, it follows that V3 #0& V3 #0 e

In conclusion, the trajectories, in the limit, of
the optimal system are governed by the following
equations:

%2 = (Az2kz — B2 BT P, )%,

%1 = (A1 — AuALP, - ALALPDx +

+(A13 — A AL P, — A ATP, — AAT P )x:

X3 = (—Au AP — A AT P )x) +

+(Ass — Al AL Ps — A AT, P2 — Ay AL P )xa
Furthermore, the eigenvalues of the subspace
B/(BNR*) go to —>c in the limit. As in the case
of relative degree (1....,1), the unstable eigenval-
ues of V*/R* go to their mirror images, i.e., are
reflected in the imaginary axis, as ¢ — 0.
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